
FLEXIBLE CONTROL OF COMPOSITE PARAMETERS IN MAX/MSP

Timothy Place,a Trond Lossius,b Alexander Refsum Jensenius,c Nils Petersd

a Electrotap, tim@electrotap.com
b BEK - Bergen Center for Electronic Arts, lossius@bek.no

c University of Oslo, a.r.jensenius@imv.uio.no
d CIRMMT, McGill University, Montréal, nils.peters@mcgill.ca

ABSTRACT

Fundamental to the development of musical or artis-
tic creative work is the ability to transform raw materi-
als. This ability implies the facility to master many facets
of the material, and to shape it with plasticity. Computer
music environments typically provide points of control to
manipulate material by supplying parameters with con-
trollable values. This capability to control the values of
parameters is inadequate for many artistic endeavors, and
does not reflect the analogous tools and methods of artists
working with physical materials.

Rather than viewing parameters in computer-based
systems as single points of control, the authors posit that
parameters must become more multifaceted and dynamic
in order to serve the needs of artists. The authors propose
an expanded notion of how to work with parameters in
computer-centric environments for time-based art. A pro-
posed partial solution to this problem is to give parameters
additional properties that define their behavior. An exam-
ple implementation of these ideas is presented in Jamoma.

1. INTRODUCTION

Presets and automation in computer music systems can be
considered possible archetypes of strategies for dynamic
control of a system. Presets in their purest form are a
vertical-only approach; all values are instantly set to a
certain state. Automation on the other hand, in its purest
form is a horizontal-only approach; a fixed stream of time-
tagged values progressing over a limited amount of time
to control the state of one parameter, often with interpola-
tion from one value to the next. While presets are widely
used in real-time signal processing environments, the use
of automation is fundamental to linear time-based media
software such as digital audio workstations and video edit-
ing software.

One obvious way of expanding the flexibility of presets
is by implementing a cross-fade or gradual transition to
the new preset by means of interpolation. Several works
have expanded this further by presenting the set of pre-
sets as points in a dataspace and developing strategies of
traversing that dataspace, creating dynamic interpolations
between two or more presets [1, 3, 8]. This has also been
extensively used by one of the authors for developing the
Hipno audio plug-ins [11].

Jamoma 1 is a system for developing high-level mod-
ules in the Max/MSP/Jitter environment [9]. It imple-
ments a Model-View-Controller (MVC) strategy, where
“objects of different classes take over the operations re-
lated to the application domain (the model), the display of
the application’s state (the view), and the user interaction
with the model and the view (the controller).” [6, p. 26].
All state management, parametric control, and automation
for Jamoma is handled within the controller layer of the
MVC paradigm. This forms the basis of all relationships
both within a module and between different modules.

In Jamoma we are currently working towards more
complex transitions of parameters in time that integrate
both vertical and horizontal qualities. This is achieved
through the integration of a cuelist system. This system
permits instant updates to parameters, or scripting of com-
plex transitional progressions, introducing horizontal as-
pects.

Previously, Jamoma offered possibilities of ramping to
a new value over a certain amount of time by means of
linear interpolation only. Recently this has been expanded
by re-implementing ramps as a combination of two new
libraries.

2. THE COMPOSITE PARAMETER

The parameter is the primary interface for a user manip-
ulating the state of a module. In most systems, the pa-
rameter has a single task: to set a variable or coefficient.
While it is straightforward to understand such a simple
one-dimensional control, it does not offer the degree of
nuance that, say, a sculptor has when working with clay.

In Jamoma, the parameter is expanded by adding prop-
erties and methods to the parameter that further refine or
change its behavior [10]. These behaviors themselves can
be in constant fluid motion together with the value of the
parameter. Some examples of parameter properties in-
clude setting a value range, filtering out repetitions, de-
termining the type of unit used to express values, and how
automation is applied. The result is a composite parame-
ter or node, made up of many constituent parts rather than
representing only a single value. As such it is more like a
multi-dimensional tool than a single point of control.

1 http://www.jamoma.org

http://www.jamoma.org


2.1. Properties and Methods

We have stated that a parameter may be enhanced by the
addition of properties and methods. A property is an as-
pect of the parameter which itself has a state. For exam-
ple, filtering of repetitive values can be turned on or off.
A method is simply a mechanism for doing something,
such as refreshing the user interface for the parameter. A
method, however, does not have any value to maintain.

One interesting aspect of properties, which does not
apply to methods, is that properties may themselves have
properties, as illustrated in Figure 1.

Environment

Module

Module

Module

Parameter

Parameter

Parameter

Another Property...

Property: Ramp Drive

Ramp Library

RampUnit: none
RampUnit: scheduler

RampUnit: queue
RampUnit: async

Function Library

FunctionUnit: linear
FunctionUnit: power

FunctionUnit: lowpass
FunctionUnit: cosine

Property: Ramp Function

FunctionUnit: tanh

Property: granularity

Property: power
Property: symmetry

Figure 1. Parameter structure in context: Within an en-
vironment, there may be many modules. Each module
may have many parameters. Each parameter may have
many properties. A property may point to a dynamic en-
tity which itself has properties, and so on.

2.2. Parameter Properties in Jamoma

Jamoma’s parameter object is an implementation of the
idea that properties and methods can meaningfully extend
parametric control. When communicating to and from
modules using the Open Sound Control protocol [13], we
use the colon separator to access the properties of the pa-
rameter as proposed in [10]:

/path/to/parameter <value>
/path/to/parameter:/property <value>

Table 1 lists the currently implemented properties of
the parameter object, with the path to the parameter omit-
ted.

3. IMPLEMENTATION

In Jamoma, the parameter is implemented as a Max ex-
ternal called jcom.parameter. Within jcom.parameter, the
ramping properties are implemented internally as a com-
bination of two shared libraries called the RampLib and
FunctionLib. The RambLib determines when a new value

Property or Method Description
:/value Value of the parameter
:/value/stepsize Size of step taken inc and dec
:/value/inc Increase the value
:/value/dec Decrease the value
:/value/default Initial value
:/type Type of data (int, float, etc.)
:/priority Order for recalling values from a preset
:/ui/freeze Stops GUI updates to save CPU
:/ui/refresh Updates the GUI
:/ramp/drive Timing mechanism for ramps
:/ramp/function Interpolation shape for ramps
:/repetitions Filter out repeated values
:/range/bounds Set a low and high range
:/range/clip What to do when the range is exceeded
:/description Documentation

Table 1. Selected parameter properties and methods in
Jamoma

is required during a ramp, while the FunctionLib deter-
mines what the new value will be. Both of these are re-
configurable on-the-fly during performance.

3.1. The Ramp Library

Depending on the circumstance, it may be desirable to
generate new interpolated values in different ways dur-
ing the ramp. Several real-time signal processing envi-
ronments distinguish between audio rate and control rate
signals [2, 7]. If the parameter is controlling a video pro-
cessing algorithm it may be sufficient to update the value
once per processed video frame [5].

The Jamoma RampLib provides a means by which to
create and use RampUnits in Jamoma. A RampUnit is
a self-contained algorithm that can slide from an exist-
ing value to a new value over a specified amount of time
according to a timing mechanism. RampUnits are imple-
mented in C++ using the TTBlue API 2 . Currently four
such RampUnits are implemented:

• none - jumps immediately to the new value. Typi-
cally used for values where ramping is not relevant
or desirable.

• scheduler - uses the Max internal clock to generate
new values at fixed time intervals. The timing gran-
ularity can be controlled using a property.

• queue - ramps using the Max queue, updating val-
ues whenever the processor has free capacity to do
so.

• async - only calculates new values when requested
to do so. This is typically used in video process-
ing modules to calculate fresh values immediately
before processing the next video image or matrix.

2 TTBlue is an object-oriented, reflective, application programming
interface for C++, with an emphasis on real-time signal processing.
http://code.google.com/p/ttblue

http://code.google.com/p/ttblue


None Scheduler Queue Async

Cosine

Linear

Lowpass

Power

TanhF
u
n
c
ti
o
n
 U

n
it
s

Ramp Units

Figure 2. The possible ramping configurations in Jamoma
can be represented as the intersection of a choice on each
of the x and the y axes.

The RampLib can easily be extended with more Ramp-
Units, and one planned extension is the implementation of
audio rate ramping.

When a new ramp is started, the RampUnit internally
uses a normalized ramping value increasing linearly from
0.0 to 1.0 over the duration of the ramp. Whenever the
RampUnit is to provide a new value, it updates the nor-
malized ramping value and passes it to a FunctionUnit as
described in Section 3.2. The normalized value is then re-
turned and scaled to the range defined by the start and end
values for the ramp, and passed on to the module.

3.2. The Function Library

The Jamoma FunctionLib API provides normalized map-
pings of values x ∈ [0, 1] to y ∈ [0, 1] according to func-
tions y = f(x). Currently five functions are implemented:

• Linear: y = x

• Cosine: y = − 1
2 · cos(x · π) + 1

2

• Lowpass series: y[n] = y[n− 1] · k + x[n] · (1− k)
The feedback coefficient k can be set as a property.

• Power function: y = xk.
The parameter k can be set as a property.

• Hyperbolic tangent: y = c · (tanh(a · (x− b))− d)
The width and offset of the curve can be set as prop-
erties. These in turn set the values of the coefficients
a, b, c and d.

The FunctionLib can easily be expanded by introduc-
ing new functions as C++ classes, also using the TTBlue
API.

3.3. Combinations

One of the advantages of implementing ramping as a
combination of two libraries, is that any RampUnit can
be combined with any FunctionUnit. Currently, with 4
RampUnits and 5 FunctionUnits implemented, this pro-
vides a total of 20 options for how to perform ramping, as
illustrated in Figure 2.

4. DISCUSSION AND FURTHER WORK

The proposed system for the ramping of parameter values
can be understood as an extension of the well-established
ADSR (attack - decay - sustain - release) envelope used
in classic synthesizers to create increasingly complex de-
velopments over time. Ramps are initiated and controlled
by simple OSC messages, thus combining simplicity of
access with complexity and expressivity of the result.

One Jamoma module, jmod.cuelist, loads a text-based
script of event cues, and is able to control all other mod-
ules [9]. A WAIT syntax can set the execution of a cue
on hold for a specified amount of time. Thus more com-
plex auditive events can be created by combining parallel
ramps for several parameters. Simultaneously the transi-
tional curve for each of the parameters can be made more
complex by building compound curves splicing together
several ramp segments, where different functions can be
used for each segment, as illustrated in Figure 3.

#######################################
CUE upAndDown
#######################################
/path/to/parameter 0.
/path/to/parameter:/ramp/function linear
/path/to/parameter 1. ramp 2000
WAIT 2000
/path/to/parameter:/ramp/function cosine
/path/to/parameter 0. ramp 8000

Figure 3. A simple cue script. The parameter first tra-
verses linearly from 0.0 to 1.0 in two seconds, and then
returns to 0.0 in eight seconds according to a cosine func-
tion

In the discussion thus far, ramps have been implicitly
understood to be goal-directed. That is to say that ramps
are moving towards a final destination in a fixed and lim-
ited amount of time. If this assumption is relaxed, the
RampLib and FunctionLib implementations can be ex-
panded further to provide even more possibilities for con-
tinuous movement of parameter values. For instance, low
frequency oscillators can be implemented as a sequence
of repeating and possibly reversed ramps. If the Function-
Lib is expanded by introducing stochastic functions, and
ramps are permitted to be of infinite duration, the Ram-
pLib can be used to trigger new random values when re-



quired. This leads to different types of stochastic drifts
and processes in time.

Presets and automation have been mentioned in Sec-
tion 1 as archetypes for strategies of dynamic control in a
system. A third possible archetype for controlling a sys-
tem is the use of mappings. Mappings define relationships
between various components in a system that interact with
each other. This creates a complex and dynamic method-
ology for generating not only vertical transmogrifications
but gestures which develop over time [4, 12].

The FunctionLib can also be used outside the context
of jcom.parameter. The jcom.map Max external maps
values in the input range [a, b] to values in the output
range [c, d]. The FunctionLib is used to determine the
curve which shapes the mapping. This curve can be
changed on-the-fly by switching between any of the avail-
able FunctionUnits.

In a similar way the RampLib can be applied outside
the context of jcom.parameter for other scheduled tasks.

5. ACKNOWLEDGMENTS

The authors would like to thank all Jamoma developers,
in particular Pascal Baltazar, for valuable contributions.
A workshop hosted by iMAL Center for Digital Cultures
and Technology 3 , Brussels, with additional support from
GMEA, Centre National de Création Musicale 4 was of
particular importance in the process of developing the is-
sues presented in this paper.

6. REFERENCES

[1] R. Bencina. The metasurface – applying natu-
ral neighbour interpolation to two-to-many map-
ping. In Proceedings of The 2005 International Con-
ference on New Interfaces for Musical Expression
(NIME05), 2005.

[2] R. Boulanger, editor. The Csound Book: Per-
spectives in Software Synthesis, Sound Design, Sig-
nal Processing,and Programming. The MIT Press,
2000.

[3] P. Dahlstedt. Creating and exploring huge parameter
spaces: Interactive evolution as a tool for sound gen-
eration. In Proceedings of the 2001 International
Computer Music Conference, pages 235–242, Ha-
bana, Cuba, 2001. San Francisco: ICMA.

[4] A. Hunt, M. M. Wanderley, and M. Paradis. The
importance of parameter mapping in electronic in-
strument design. Journal of New Music Research,
32(4):429–440, 2003.

[5] R. Jones and B. Nevile. Creating visual music in
jitter: Approaches and techniques. Computer Music
Journal, 29(4):55–70, 2005.

3 http://imal.org/
4 http://www.gmea.net

[6] G. E. Krasner and S. T. Pope. A cookbook for using
the model-view controller user interface paradigm in
smalltalk-80. J. Object Oriented Program., 1(3):26–
49, 1988.

[7] J. McCartney. Supercollider: A new real time syn-
thesis language. In Proceedings of International
Computer Music Conference 2000. Hong Kong, 16.

[8] A. Momeni and D. Wessel. Characterizing and con-
trolling musical material intuitively with geometric
models. In Proceedings of the 2003 Conference on
New Interfaces for Musical Expression, pages 54–
62, Montreal, Quebec, Canada, May 2003.

[9] T. Place and T. Lossius. Jamoma: A modular stan-
dard for structuring patches in max. In Proceed-
ings of the International Computer Music Confer-
ence, pages 143–146, New Orleans, LA, 2006.

[10] T. Place, T. Lossius, A. R. Jensenius, N. Peters, and
P. Baltazar. Addressing classes by differentiating
values and properties in osc. In Proceedings of the
2008 Conference on New Interfaces for Musical Ex-
pression, Genova, Italy, 2008.

[11] T. Place, N. Wolek, and J. Allison. Hipno: Getting
Started. Cycling’74 and Electrotap, 2005.

[12] D. van Nort and M. M. Wanderley. Exploring the
effect of mapping trajectories on musical perfor-
mance. In Proceedings of Sound and Music Com-
puting, Marseille, France, 2006.

[13] M. Wright, A. Freed, and A. Momeni. OpenSound
Control: State of the art 2003. In Proceedings of
NIME-03, Montreal, 2003.

http://imal.org/
http://www.gmea.net

	 Introduction
	 The Composite Parameter
	 Properties and Methods
	 Parameter Properties in Jamoma

	 Implementation
	 The Ramp Library
	 The Function Library
	 Combinations

	 Discussion and further work
	 Acknowledgments
	 References

