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ABSTRACT

This paper presents an object-oriented, reflective, ap-
plication framework for C++, with an emphasis on real-
time signal processing. The Jamoma Foundation and DSP
Library provide a runtime environment and an expand-
ing collection of unit generators for synthesis, processing,
and analysis. It makes use of polymorphic typing, dy-
namic binding, and introspection to create a cross-platform
API pulling ideas from languages such as Smalltalk and
Objective-C while remaining within the bounds of the
portable and cross-platform C++ context. Over the past sev-
eral years this library has been used in both open source and
commercial software projects in the sound and music com-
puting field.

1. INTRODUCTION

“The SMC (Sound and Music Computing) Roadmap iden-
tifies two broad research challenges: (1) To design bet-
ter sound objects and environments and (2) To understand,
model, and improve human interaction with sound and mu-
sic.” [32] The Jamoma Foundation and DSP Library directly
addresses the first task as a means by which to address the
second task. Before discussing the approach and relative
merits of the Jamoma project, we will first lay out some def-
initions and quickly review similar projects.

1.1. Terminology

For the course of the paper, the usage of various computer
science jargon and terminology needs to be defined. In
object-oriented programming functionality related to a set
of data is treated as a unit. These units, or objects, are cre-
ated and then often passed using a reference or pointer to
the memory in which the object’s contents are stored. These
objects comprise methods (functions) and attributes (prop-
erties or data which represent part of an object’s state).
Polymorphism is a means by which a programming lan-
guage generalizes different types of functions or data using
a common AP, or Application Programming Interface. An
example of a polymorphic data-type of the variety in which
we are interested is a ‘var’ in the Javascript language [7].
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That is to say that a variable may contain any data-type inter-
nally (including an object or array), the details of which are
not necessary in order to use or pass the data type amongst
functions.

Introspection refers to the ability to determine the char-
acteristics of an object at runtime. This means that when
handed a pointer in C++, we can take the pointer and query
for an object’s name, its type or class, the messages that
it understands, the attributes it possesses, etc. By exten-
sion, reflection refers to the ability to then modify the be-
havior of an object at runtime [19]. In practical terms this
means adding messages, changing attributes, over-riding au-
dio processing methods, and extending existing instances of
objects as the software is executing and without stopping the
software to re-compile the code.

Introspection and reflection are often implemented by
making use of a dynamic binding model. Programming
languages such as C++ and Java link function and method
calls when a program is compiled, which is known as static
binding. A dynamically bound model does not link these
functions at compile-time, but instead waits until a method
is called at runtime to resolve its address. For this reason,
we say we are ‘sending messages’ to objects when using a
dynamic binding model. Dynamic binding is the hallmark
of Smalltalk [14], Objective-C [6], and Ruby.

A confusing gaggle of terminology exists for classifying
systems of objects throughout the literature of the computer
music field. These include framework, library, environment,
and roolkit. For the purposes of this paper the following def-
initions will be used. A unit generator is a class or object
that implements a well-defined DSP task such as generating,
analyzing, or processing audio data. A library is a collec-
tion of pre-built and ready-to-use unit generators. A toolkit
is a collection of functions, utilities and helpers, possibly
with an API, for creating unit generators. A framework is
an architectural structure that underlies a system of unit gen-
erators. A runtime is a daemon or framework operating in
real-time when a framework, toolkit, or unit generator is in
use. A runtime’s role is typically for dispatching messages,
balancing processor loads, or otherwise running the back-
ground machinery such as in the Objective-C or Java run-
time environments. An environment is a full-fledged sys-
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tem intended for use by an end-user. Examples include Max,
SuperCollider, ChucK, DAW applications, and CSound.

1.2. Requirements

The authors are involved in multiple divergent and paral-
lel efforts which requires both a framework for creating
unit generators and a library of ready-to-go unit generators.
These efforts include both open-source and closed-source
commercial applications targeting multiple platforms and
environments. To meet the manifold demands of these ef-
forts, we stipulate the following list of requirements regard-
ing how the framework must perform and behave.

e Licensing allowing open source and commercial use

e Cross-platform compliant (e.g. Mac, Windows,
Linux, Embedded Devices, Mobile Platforms)

e 64-bit audio resolution

e Multichannel audio support

e Reasonably efficient, i.e. frame-based audio pro-
cessing, but no cryptic optimizations

o User-extensible, adding functionalities without re-
compiling core frameworks

e Dynamically reconfigurable classes at runtime

e Adaptable process method for varying input (frame
sizes, channel configurations, etc.) on-the-fly

o Effortless use of classes in different environments
(Max/MSP, VST, AudioUnit, ChucK, Pure Data)

Having met these technical requirements, the authors also
deem an additional set of process requirements to be impor-
tant. These requirements adhere to contemporary philoso-
phies for good coding practice, facilitating the readability,
debugging, maintenance, and distribution of code.

e expressive syntax, idioms, and conventions

e adhere to the DRY (Don’t Repeat Yourself) princi-
ple, which states that “Every piece of knowledge must
have a single, unambiguous, authoritative representa-
tion within a system” [11]

e convention over configuration [A1]

e tag-based searching for class categorization and ob-
ject instantiation

e integrated unit testing and benchmarking [A2]

2. PRIOR ART

A myriad of existing libraries, toolkits, frameworks, and en-
vironments are available for digital signal processing. To
justify the effort of creating a new framework the merits of
the extant members in this field should be considered, par-
ticularly with regard to our previously stated requirements.

2.1. Choice of Language

An immediate winnowing of the field of contenders can
be accomplished by discussing the choice of programming
language. There are popular and well structured DSP li-
braries for Java [10, 4] and Objective-C [12, 13], for ex-
ample, but these languages also carry restrictions and bag-
gage. Java is not installed on Windows systems by default
and is not available in the context of many embedded de-
vices. Objective-C is available on Windows only through
the clumsy and inadequate GnuStep project! [A3] and also
is not available in the context of many embedded or mobile
devices. Interpreted languages such as Ruby and Python are
quite powerful, but do not provide the required speed for
real-time DSP performance in embedded environments and
also create portability problems.

Another class of languages are domain-specific lan-
guages for audio signal processing. These include Super-
Collider [20], ChucK [34], and CSound. For our purposes
we will also consider the Max family (including MSP [35]
and PureData [28]) to be domain-specific-languages . These
domain-specific languages do provide facilities both for cre-
ating and using Unit Generators, but often have portability
limitations and very frequently have licensing limitations?.
These environments also frequently have a large footprint
in that they are very resource demanding, while we desire a
light-weight framework with a minimum of dependencies.

The C++ language and its compilers are ubiquitous
across platforms and capable of creating extremely high-
performance code optimized for digital signal processing.
Plug-ins and extensions for sundry environments and lan-
guages can be compiled using C and C++.

2.2. Plug-in APIs

A related subject is the creation of audio plug-ins using ex-
isting APIs. VST, RTAS, LADSPA/DSSI, and AudioUnits
are all APIs for creating UnitGenerators in C/C++. None of
these technologies, however, meet our requirements. None
are actually libraries, though there is a standard set of the
non-cross-platform AudioUnit plug-ins provided by Apple.

2.3. Licensing

As stated, the authors require a framework that can be used
in both open-source and commercial applications. This im-
mediately rules out the use of any existing work licensed
under the GNU GPL, which stipulates that all works us-
ing it are themselves licensed under the GNU GPL. Among
the options this rules out are SndObj [16], CLAM [1], and

'E.g., one cannot natively compile using Microsoft’s MSVC compiler.

2ChucK and SuperCollider are examples licensed as GPL and not avail-
able for commercial development, while Max/MSP is not available on em-
bedded devices nor in plug-in host environments (besides Ableton Live)



Marsyas [33]. Additionally, the CSL framework [27] re-
quires licensing through the University of California.

Due to these licensing restrictions, none of the afore-
mentioned packages are suitable for our use. They do, how-
ever, contain many valuable ideas that serve to inform our
own work.

2.4. Dynamic Binding

One of our core concerns is the requirement for dynamically
reconfigurable classes at runtime. For this, dynamic binding
is of critical importance. Dynamic binding is implemented
to some degree in many of the aforementioned environments
including Marsyas, Max/MSP, and the NeXT SoundKit for
Objective-C. Due to our cross-platform and liberal licensing
requirements, however, they are not options. Of the remain-
ing DSP libraries and toolkits, the STK [5], CMix [15], and
TANGA [30] are all statically-bound.

An interesting middle-of-the-road option is Kronos. In
fact, the problem domain of the Kronos system is the same
as our problem domain: ““ the musician may want to change
the program during its execution. This was possible in the
analog music studio, where swapping out patch cords often
resulted in immediate gratification. In the digital world pro-
grams often have to be aborted, edited, re-compiled, linked
and launched. The all-important musical hacking suffers
from such a heavy compilation cycle, making a traditional
programming language less desirable for real time artistic
expression.” [21]

Dynamically-bound frameworks and runtimes, such as
PureData, Objective-C, or Marsyas, solve this problem by
precompiling the unit generators and then directing mes-
sages to these objects at runtime. Kronos takes an alter-
native approach where the graph of objects, indeed the unit
generators themselves, are not precompiled at all but rather
compiled ‘Just in Time’ from a custom meta-language. This
results in better performance from the code, while still main-
taining much of the flexibility offered by a dynamically-
bound runtime. The performance results are compelling.
Unfortunately, a just-in-time compilation still requires com-
pilation every time you change the interconnections between
objects, and the resulting domain-specific language may be
limited to only the domain for which it is written.

One interesting cross-platform, dynamically-bound, and
liberally licensed architecture is ZenGarden [A4]. One fea-
ture of ZenGarden is the use of PureData as an authoring
environment to define a graph of ZenGarden’s own unit gen-
erators, as was done for the popular RjDj iPhone app [AS].
Unfortunately, at the time of this writing, ZenGarden does
not pass our next requirement: 64-bit audio fidelity.

2.5. 64-bit Audio

The higher resolution of 64-bit audio improves stability and
fidelity in processes that are vulnerable to numerical insta-

bility. This includes IIR filters at extreme settings and signal
processing algorithms solving differential equations, as used
in physical modeling. If audio signals are used as wavetable
lookup indices, a 32-bit float signal with a 24-bit signed
mantissa is able to address only 6’20 with sample accu-
racy at 44.1 kHz and no more than 1’26 at 192 kHz. In a
64-bit audio chain this problem is nonexistent for all practi-
cal concerns. The computational overhead required for 64-
bit processing is counteracted by increasingly commonplace
64-bit processors.

2.6. Conclusion

In the end we found no one framework to possess all of the
requirements set forth in Section 1.2. The de facto standard
for audio DSP libraries, the STK, comes perilously close as
of more recent revisions [31], and offers a rich and mature
array of unit generators. As a statically-bound toolkit, the
STK may offer potentially faster runtime execution than a
dynamically-bound framework such as the one we propose.
For a given application or problem domain the characteris-
tics of each should be weighed, as there are clear justifica-
tions for both to coexist within the greater computer music
ecology.

3. PLATFORM ARCHITECTURE

3.1. A Layered Framework Structure

It is common to organize software frameworks into a num-
ber of layers from low level system services at the bottom
towards higher level abstraction at the top. Frameworks may
build upon and extend frameworks below them in the hi-
erarchy, but the lower frameworks have no knowledge of
the higher frameworks. Divisions between the frameworks
help to establish clarity as to what functionalities belong to
which part of the system. Examples of such layered ar-
chitectures are the Open Systems Interconnection network
model (OSI) [A6] for layered communications and com-
puter network protocol design or the iPhone Software Ar-
chitecture. A similar layered approach has been proposed
by the authors for spatialization systems [23].

Jamoma, originally conceived as a modular standard for
structuring patchers in Max [24], has now evolved into a
layered architecture of frameworks providing comprehen-
sive infrastructure for creating computer music systems in
general, not just for Max/MSP. This section presents each of
the five frameworks currently comprising the Jamoma Plat-
form: Jamoma Foundation, Jamoma DSP, Jamoma Graph
and Audio Graph, Jamoma Graphics and Jamoma Modular
(see Figure 1). We will emphasize the Foundation and DSP
layers to show how we meet the requirements of Section 1.2.

It is possible to use only a subset of the provided frame-
works according to a project’s complexity. All frameworks
within the Jamoma Platform share a common structure. A
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Figure 1. The Jamoma Platform as Layered Architecture.

shared-library implements base classes and core functional-
ity. This functionality is then augmented and enhanced by
creating extensions. An extension is a plug-in library dy-
namically loaded at runtime. In this way the system can be
expanded without recompiling core components.

3.2. Foundation

The Jamoma Foundation [A7] is analogous to the Objective-
C Foundation, which “Defines the ‘nuts and bolts’ classes
for Objective-C programming” [A8]. The Jamoma Founda-
tion defines base classes including the primary base class,
TTObject. Object life-cycle facilities include factories
for creating, destroying, and referencing these classes. A
message-passing and attribute system inspired by Smalltalk
and Objective-C is implemented to enable dynamically-
bound object topologies.

The Jamoma Foundation classes are informed by many
best-practices of software development. Unit Testing is in-
tegrated directly into the class design. There is also an em-
phasis on the use of design patterns [8]. In particular, all
objects possess a built-in observer notification system.

Complexity, ‘glue code’, and the mechanics of writing
esoteric C++ are hidden from the programmer as much as
possible in adherence with a convention-over-configuration
paradigm whereby the clarity of the code is dramatically
improved. This results in code that is not only less time
consuming to create and maintain, but also more enjoyable.
This aim is further aided by emphasizing DRY principles
throughout the Jamoma Platform.

Functionality specific to audio or digital signal process-
ing is not present in this particular framework. The Jamoma
Foundation is a general multipurpose framework and run-
time used as a dynamically-bound API layer for C++. The
Jamoma Graphics Library exemplifies this.

3.2.1. Messages and Attributes

As with other similar runtime systems, the Jamoma Foun-
dation defines a symbol table for efficient message dispatch

and lookup. This symbol table is leveraged in the imple-
mentation of messages and attributes. A message is defined
as a method of a class or instance that is then bound to a
symbol. Messages may optionally possess arguments for
passing data to and from the object.

An attribute is defined as a data member of a class or
instance, whose access is bound to a symbol. Typically, the
setting or retrieving of the value then uses a built-in accessor
method. If needed, a custom setter or getter method can be
defined to override the built-in mechanism.

Additionally, attributes may possess properties. Prop-
erties are implemented as attributes of the attribute. They
include the ability to define ranges for an attribute, the be-
havior of an attribute’s value when the range is exceeded,
etc. The design of this system is consistent with the au-
thors’ previous proposals for more sophisticated control in
parametric systems [25].

3.2.2. Implementation

The Jamoma Foundation relies upon two primary corner-
stones to actualize the notion of sending messages to objects
and, by extension, setting attributes of objects. The first is
a polymorphic data-type, TTValue, that enables us to pass
data to and from methods regardless of the kind of data ac-
tually contained, while using a common interface.

Second, by using TTValue to represent any arbitrary
data, we are able to abstract the function/method prototype
for any message or attribute. By doing so, we create a sys-
tem by which all communication to and from objects occurs
using a singular interface. The messages and attributes of an
object are managed internally by fast hash tables of point-
ers. Changing the contents of the hash table or the values of
the pointers at runtime then reconfigures how messages are
directed and handled, while not requiring any recompiling
or relinking of the code.

TTObject implements an observer pattern by maintain-
ing linked-lists of other objects that wish to be notified of
events. The objects registered as observers are then sent
messages from TTObject. If the objects respond to the
message, then they can respond appropriately. If they do
not respond to the message, then they will simply ignore it.
In this case no intervention is required by the user or pro-
grammer, and this situation is not considered as an error. In
a statically-bound system this situation would likely lead to
a compile-failure, thrown exceptions, crashes during opera-
tion, or worse.

3.3. DSP Layer

The Jamoma DSP Layer [A9] augments the Foundation by
extending TTObject to create a new TTAudioObject base
class. TTAudioObject provides the core functionality for
processing multichannel, 64-bit, audio samples singly or
in blocks, while providing basic thread protection. It also



provides attributes and audio processing methods to control
muting, bypass, sample-rate, and others that are inherited by
subclasses.

In addition to the framework and base-classes, the DSP
layer also provides toolkit functionality with convenience
functions for filtering denormals and dc-offsets, and a li-
brary of classes as extensions implementing a variety of
unit generators. The provided unit generators include ba-
sic trigonometry functions, filters, oscillators, noise gen-
erators, analysis, effects, etc. These classes are organized
and classified on several different levels. First, every object
is classified using tags when the object is registered with
the Foundation at runtime. The Foundation then manages
this registry and its metadata for use by the factory methods
for creating instances. Secondly, the classes are organized
into dynamically loaded extensions that share common in-
terfaces and functionality.

3.3.1. Extensions

User extensions may be created for any of the layers built-
upon the Jamoma Foundation. At this time, extensions are
almost exclusively for the purpose of creating unit genera-
tor classes with Jamoma DSP. An extension may implement
zero or more classes, which are registered with the Founda-
tion when the extension is loaded.

The extensions included with Jamoma DSP are orga-
nized into groups of classes that share a common interface.
For example, the FilterLib implements more than two dozen
audio filters including Butterworth and Linkwitz-Riley al-
gorithms for various frequency responses. All classes in the
FilterLib use shared semantics for defining message and at-
tribute names, such as ‘frequency’, and can thus be easily
substituted for one another. Similarly, the FunctionLib im-
plements a number of algorithms designed for use in gestu-
ral mapping scenarios.

While common attribute and message names are pre-
ferred, some unit generators will necessarily provide ad-
ditional controls when compared to simpler or different
classes. When substituting one class for another, we lever-
age the dynamically-bound architecture because we can
send messages to an object, even if it does not understand
them. In this case the messages are simply ignored. With
introspection features, all classes can be queried to find out
what attributes they do possess, what ranges characterize
those attributes, etc. Objects can also be modified at runtime
to add handling for messages not envisaged at compile time
using reflective techniques, allowing them to be adapted for
use in different contexts.

In addition to the FilterLib and FunctionLib, the grow-
ing number of extensions for Jamoma DSP include the
AnalysisLib, GeneratorLib, MathLib, EffectsLib, and Win-
dowFunctionLib.

3.4. Additional Layers

Additional layers have been created on top of the Jamoma
Foundation, both in series and in parallel with the DSP layer.

The Graphics Layer [A10], based on Cairo [A11], pro-
vides a platform-independent and host-independent way to
create 2D graphical user interfaces (GUI). It has already
been used in Max/MSP and for AudioUnit plug-ins.

The Graph Layer provides a means by which Jamoma
Foundation objects may be networked (’patched’) together
to perform either synchronous or asynchronous tasks. The
Audio Graph Layer [A12] specializes the Graph Layer to
combine unit generators from Jamoma DSP into audio pro-
cessing topologies. Many of the initiatives reviewed in Sec-
tion 2 conflate both a means to create unit generators and
a method by which those objects are combined into audio
graphs. In the Jamoma Platform we provide a clear division
between creating and using unit generators versus combin-
ing them into a graph. This allows the unit generators to be
assembled in any way that seems desirable for a particular
context.

The Modular Framework [A13], the highest layer of
the Jamoma Platform, provides a modular structure for de-
veloping and controlling Max/MSP/Jitter patches [24]. It
builds upon the Foundation, DSP, Graphics, and Graph/Au-
dioGraph frameworks.

3.5. Ruby Language Bindings

As a dynamically-bound API, the Jamoma Foundation is a
natural fit for control from the Ruby environment. Language
bindings for Jamoma in Ruby exist via the Jamoma Ruby
project [A14]. This enables use in a wide range of applica-
tions including live coding using irb [A15] and integration
with web applications using Ruby on Rails [A16].

4. APPLICATIONS

The technical underpinnings of the Jamoma Foundation and
DSP Library lend themselves to a variety of applications.
Jamoma DSP’s API provides a clear interface for creating
and using unit generators in the C++ and Ruby languages.
Additional tools and facilities tailored to the requirements of
various host environments make Jamoma DSP’s unit gener-
ators readily accessible.

4.1. Max/MSP

The easiest way to create a Max/MSP external using a
Jamoma DSP unit generator is by using the provided
Jamoma DSP “Class Wrapper”. The class wrapper takes
an existing class and creates all of the required bindings and
interfaces for the target environment. Following is the com-
plete code listing for an N-channel MSP external that wraps
the Jamoma DSP lookahead-limiter class.



#include "TTClassWrapperMax.h"
int main (void)
{
TTDSPInit ();
return wrapTTClassAsMaxClass (TT ("limiter"),
"myMaxLimiter™", NULL);

Besides simply wrapping existing classes there are other
ways to create Jamoma DSP-based externals. One exam-
ple is the jcom.filter~ external provided with Jamoma DSP.
This object dynamically loads any of the filter classes from
the DSP Library. A filter is loaded and swapped on-the-fly
without requiring Max’s DSP chain to be rebuilt. The code
for the jcom.filter~ external searches the Foundation’s ob-
ject registry for available filter classes to present a list of
choices for the user. This list will then be dynamically up-
dated if new filters are added, also without the need to re-
compile the external.

4.2. Plug-ins

Jamoma DSP provides several example projects that include
VST and AudioUnit plug-ins. AudioUnit plug-ins requiring
only a generic interface may be created using a class wrap-
per similar to the one for creating Max/MSP externals.

The spatial sound rendering technique ViMiC (Virtual
Microphone Control) is a virtual multi-microphone record-
ing environment [2]. ViMiC is implemented and compiled
as a Max external as well as an AudioUnit plug-in. The vir-
tual microphones and sound sources can be controlled and
manipulated in a custom interface developed using Jamoma
Graphics. Additional control features are accessible using
the generic AudioUnit interface (see Fig. 2).
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Figure 2. ViMiC AU custom (front) and generic Ul (back).

4.3. Ruby, IRB, Rails

Ruby Language Bindings make the entirety of the DSP li-
brary accessible in the Ruby environment. Together with

Jamoma Audio Graph, Ruby’s interactive shell (irb) can be
used for live-coding by creating objects and manipulating
the graph of those objects in real-time. The following code
shows a very simple irb session creating an instance of a
lowpass filter and interactively passing values one at a time
through the filter.

# irb

>> require ’TTRuby’
JamomaFoundation -- Version 0.6
JamomaDSP —-- Version 0.6

=> true

>> f = TTRuby.new("lowpass")
=> #<TTRuby:0x1011db170>

>> f.calculate(1.0)

.25

.calculate(1.0)

.4375

\%
\%
O Hh O

Leveraging the popular Ruby on Rails web framework,
Jamoma DSP classes are made available for a multitude of
web applications. The authors have begun employing one
such Ruby on Rails application to graph related functions in
real-time for comparison and algorithm analysis.

4.4. Additional Environments

Jamoma DSP includes further example projects wrapping
classes for PureData and SuperCollider.

5. DISCUSSION AND FUTURE WORK

The class wrapper demonstrated in Section 4.1 illustrates the
power of the Jamoma Foundation for use as a rapid proto-
typing environment. It leverages all of the features of dy-
namic binding to make classes available to many different
environments on many platforms with a minimal amount of
coding and effort required. We can combine objects together
in the environment of our choice: Max, Pd, DAWs by means
of plug-ins, or a web-browser using Ruby on Rails. This al-
lows for easy code transfer between environments. In the fu-
ture the class wrappers can be expanded to cover even more
environments, including VST, SuperCollider, and CSound.

The Jamoma frameworks are all user-extensible through
the creation of extension classes that are loaded and reg-
istered at runtime. We are continuing to add support for
more audio processing algorithms in the Jamoma DSP, in-
cluding spectral processing and granulation. We also plan
to add support for additional spatialization algorithms such
as VBAP [29], Ambisonics [9, 26] and DBAP [18] to sup-
port ongoing development on spatialization within Jamoma
Modular [23].

A myriad of mundane, but critical, details for DSP
classes are taken care of by the DSP framework. This in-
cludes a 64-bit audio signal class that automatically adapts
its channel configurations and vector-sizes based on input.
For developers, multi-threaded environments are the source



of many perpetual headaches. Jamoma DSP applies a light-
weight thread-protection model where needed, but avoids
causing performance problems.

Introspection features of the Jamoma Foundation make
it possible to query objects to automate the process of cre-
ating mappings and advanced control of the objects such as
those cataloged in [22].

A strength of the architecture of Jamoma DSP is the
ease with which one can combine, connect, reconnect, and
reconfigure unit generators on the fly. This characteristic
lends itself to exploring a variety of paradigms for connect-
ing unit generators into processing graphs. The initial devel-
opment of Jamoma Audio Graph implements an explicitly
constructed topology of unit generators using dynamic mul-
tichannel connections between nodes in the graph. We have
begun discussing alternative models that resemble the im-
plicit patching pattern of Marsyas [3]. In particular we have
initiated a design for processing signals through a grouping
of objects into an array.

The GNU LGPL license chosen for the Jamoma frame-
works have enabled them to be used for open-source as
well as commercial software development. Electrotap’s
Tap.Tools [A17] is a collection of externals for Max/MSP
with an emphasis on audio effects processing. Hipno [A18]
was a set of audio effects plug-ins in the VST, RTAS and
AudioUnit formats using the now discontinued Cycling’74
Pluggo environment. Plug-in development expanding upon
the ideas from Hipno is underway, using the Jamoma Plat-
form as a means of gaining independence from the restric-
tions of proprietary frameworks.

6. SUMMARY

Jamoma Foundation and DSP provide a flexible, user-
extendable, runtime environment for creating and using
audio and digital signal processing objects. Due to its
advanced use of dynamic binding and message-passing
paradigm, the building blocks can be reconfigured at run-
time without requiring re-compilation. The unit generators
themselves are compiled as C++, and by performing block-
processing we retain the performance characteristics of a
compiled language.

Perhaps more important, but more difficult to quantify,
we believe we have created a context in which code is
‘pleasant to work with’. As stated in [17], “A well-defined
API can also speed up the development process, since the
implementation can focus more on the algorithmic aspects
and less on implementation issues like API design.”

The power of this runtime is demonstrated through the
ability to compile objects for Max, Pd, AudioUnits, VST,
and Jamoma Audio Graph.
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