
JAMOMA: A MODULAR STANDARD FOR
STRUCTURING PATCHES IN MAX

Tim Place* and Trond Lossius†

*Cycling ’74, Electrotap LLC, University of Missouri – Kansas City
tim@electrotap.com

†Bergen National Academy of the Arts, Department of Fine Arts
trond.lossius@khib.no

Abstract
Jamoma is a system for developing high-level modules in
the Max/MSP/Jitter environment. Jamoma consists of two
parts: A recommendation and an implementation of that
recommendation. Jamoma offers a compelling set of
benefits to users. These benefits include fast and flexible
interchange of modules, patch-building, and module
construction, as well as possibilities of advanced control of
the modules in performance. Jamoma modules may
encapsulate any type of functionality that can be performed
by Max, MSP, Jitter, its components (such as Java or
JavaScript), or any third-party objects.

1 Introduction
Max/MSP is a flexible environment that has become

something of a lingua franca for practitioners of computer-
based live performance. A wide range of libraries of low-
level externals and abstractions are available for this
environment. Comparatively few high-level patches are
shared within the community, and they generally seem to be
more difficult to share. A possible explanation might be that
Max imposes no particular way of working on its users.
Indeed, the metaphor for what it provides users is a blank
page (Zicarelli, 2002). Patching-style can be highly
idiosyncratic, making it difficult to merge patches by
different authors into a cohesive system. The general lack of
consistency in how patches are automated or controlled also
means that users of shared high-level patches must
thoroughly learn many systems to use patches created by
others. In the words of David Zicarelli, "Max/MSP does not
enforce readability, consistency, or efficiency on its users.
There are no real standards for interoperability at the level
of the patcher..."

The first goal of the Jamoma project is to address
concerns of sharing and exchanging Max patches in a
modular system. This means creating a structured
framework that does enforce consistency, readability, and
standards for interoperability while not placing daunting
restrictions on users. Zicarelli states, "A system in which
components talk to each other in a standard way allows for

the sharing of expertise among people working on a variety
of interests and with varying levels of expertise."

The second goal of Jamoma is to leverage this structured
environment for effective, efficient, and powerful means of
automating and controlling Max patches. The Jamoma
framework has created a wide variety of possible
interactions for automated control without enforcing any
particular paradigm to which a user must conform.

A number of similar initiatives have been introduced in
the past. One of these is the Pluggo architecture, which
provides a way of encapsulating Max/MSP patches as plug-
ins for general audio software. Other modular environments
typically serve a specific purpose or setting. These include
Lloopp1, Framework2, UBC Max/MSP/Jitter Toolbox3, and
the Jade4 application – extractions distilled from Jade served
as the origin of the Jamoma project. These environments
generally do not share all of the properties of Jamoma,
namely that it is open-source, free, fully modular, and
generic use (not limited to only audio, only video, etc.).

2 Jamoma Features

2.1 JIG: Jamoma Interface Guide
The Jamoma Interface Guide is a recommendation for

common issues in Max patches regarding construction, state
handling and interfacing. The recommendation ensures
inter-operability of modules so that they might be reused,
exchanged and documented in a generic way. At the same
time the guideline is designed to be open-ended and
extendable so that it does not introduce restrictions
concerning what tasks modules might possibly perform as
compared to the underlying structure of MaxMSP/Jitter
itself. Jamoma strives to maintain the flexibility
characteristic of new media as defined by Manovich (2001).

Jamoma is modular. All parts of the Jamoma system are
implemented as modules, self-contained components of a

1 http://lloopp.klingt.org/start.html
2 http://www.leafcutter.33-rpm.net/Downloadframework.htm
3 http://www.opusonemusic.net/muset/toolbox.html
4 http://www.electrotap.com/jade/

system, with a well-defined interface to the other
components.

The leftmost inlet and outlet of any module is reserved
for communication of control information to and from the
module using the Open Sound Control protocol (Wright and
Freed, 1997). Modules are expected to maintain a record of
their current state, and this state can be queried and stored.
Modules may define parameters and messages. Parameters
alter the state of the module. Arguments passed can be of
any type permitted by the Max environment. If a parameter
expects a floating point or integer argument, a range can be
defined where upper and/or lower limits enforced. In
addition, the parameter may be set to ramp to new values
over a period of time given as a second optional argument.
At this time only linear ramping is supported; more ramping
modes will be implemented in the future. Messages behave
the same as parameters, except that they are stateless.

Optional additional inlets and outlets are used for audio
signals or passing video as Jitter matrixes. This can easily
be expanded to include other types of data if required. The
Jamoma specification poses no restrictions on the number of
inlets or outlets used for signals, and neither is it required
that the number of inlets and outlets are identical. A module
might mix various types of signals, though no such modules
are implemented in the current distribution.

It is recommended that all modules implement certain
standard messages and parameters to ensure that common
tasks are dealt with consistently. Additional standard
parameters and messages are recommended for audio and
video modules respectively. These will be further described
in the following sections.

Jamoma specifies the user interface to have fixed
dimensions based on the paradigm of conventional rack
mount hardware. The standard size of a module is 510x60
pixels. Modules might be several rack units tall, and/or a
half rack unit wide. The width of 510 pixels was chosen to
maximize the number of modules that can fit on a monitor
with a resolution 1024 pixels wide, encouraging efficient
and consistent use of screen real estate. While this may
seem like an unnecessary restriction on first glance, the
enforcement of this lattice vastly simplifies organization of
modules on the screen for efficient use by both automated
and human processes.

2.2 Jamoma Modules
A number of externals and abstractions (Max patches

made to behave like externals) have been developed to
facilitate the development of modules. In Jamoma
terminology these are called components.

Figure 1 shows jmod.hub, the central brain of the
module. jmod.hub maintains all control communication to
and from the module, as well as communication to and from
other components in the module. It also keeps track of the
state of the module, working in tandem with pattrstorage,
part of the new regime offered as part of Max/MSP 4.5 for

improved state handling. Arguments to jmod.hub are
required for setting up local wireless communication of
messages within the module, describing the name and size
of the module, the number of signal inlets and outlets, what
kind of data the module is dealing with, and a description of
the module. jmod.hub also has the ability to auto-generate
HTML documentation for the module.

Figure 1. jmod.hub communicates with the outside world,
handles internal state, and controls the logical algorithm.

Currently three basic types of modules are implemented,
dealing with control data, audio and video respectively.
Other types of modules might be implemented in the future.

Each module is made up of three functional elements.

Graphical User Interface (GUI). The graphical user
interface provides visual feedback and interaction with the
module. The interface aims to provide access to as many
parameters of the module as possible, while remaining
efficient in terms of screen usage.

The jmod.gui component, loaded as a bpatcher, forms
the backdrop of the GUI section. Arguments to jmod.hub set
the size of jmod.gui, as well as the look, depending on the
kind of data the module is processing. Common tasks of
modules are implemented as part of jmod.gui. The GUI uses
a skinnable system to allow for customization of the look
and feel of a module.

For audio modules an optional widget offers monitoring
of output levels as well as the ability to mix dry and wet
signals, mute or bypass the module and change internal
sampling rate, as illustrated in Figure 2.

Figure 2: The jmod.degrade~.mod emulates use of lower
sample- and bitrate.

Figure 3 illustrates the pop-up menu shared by all
modules. The content of the menu varies depending on the
type of module. For all modules, screen updates of the user

interface elements can be disabled to conserve CPU cycles.
HTML documentation of the module can be accessed and
the algorithm (the internal logic of the module) may be
viewed in a separate window. Current state can be saved as
an XML preset file, previously saved presets may be loaded,
or the default preset recalled. For video modules additional
menu items offer possibilities of bypassing, muting or
freezing the video processing.

Figure 3: Several common messages and parameters can be
accessed from the pop-up menu.

The main section of the GUI is reserved for graphical
user interface objects for interacting with various parameters
and messages specific to the module. The design of this part
of the GUI is left to the whim of the module creator.

Parameter Handling. The two components jmod.parameter
and jmod.message are used to define what parameters and
messages the module accepts. They also deal with any
boundaries on range and type of argument, as well as the
ramping mechanism. The components might be connected
to graphical user interface objects for user interaction and
feedback. They connect wirelessly to jmod.hub for
communication with the rest of the patch, and the outside
world.

Figure 4. A stereo algorithm for audio degrading.

Algorithm. The logical task of the module is generally
implemented as a subpatch and saved separately. Figure 4
shows one such subpatch, or algorithm, for a simple audio
processing module. The algorithm shares several
conventions with the module. The leftmost inlet and outlet
is used for communicating control data to and from the
algorithm using Open Sound Control messages. Additional
inlets and outlets are used for passing audio and video
signals to and from the algorithm. Audio algorithms can be
loaded in the module using the poly~ external, incorporating
the possibility of several parallel instances as well as the

capability for muting of the algorithm, or downsampling it,
to save CPU cycles. In this case the leftmost inlet will be a
shared control-data and signal inlet. The algorithm differs as
compared to a module by being stateless and not offering
any graphical user interface.

Documentation. For all modules distributed as part of
Jamoma, HTML documentation is provided as well as help
patches illustrating the use of the module. There are help
patches for custom externals and components. Tutorials are
provided on how to build modules, and templates for
modules are provided to simplify the process.

3. Examples of Usage

3.1 Controlling Jamoma Modules
Modules might be controlled in a number of different

ways. A system for remote communication enables a set of
control modules for controlling other modules. Several such
modules are implemented. jmod.cuelist.mod loads a text-
based script of event cues, and is able to control all modules
provided that they have been given unique names via Max’s
script-name inspector. The cues can be executed in arbitrary
order. A WAIT syntax can set the execution of a cue on
hold for a specified amount of time, opening up the
possibility for scripting of complex events evolving over
time. The current state of all modules can be queried, and
used to create new cues. Figure 5 provides a simple
example.

###############################
CUE sweep
###############################

Module filter~
/filter~/cf 3000 3000
WAIT 6000
/filter~/cf 200 3000

Figure 5. A cuescript. The center frequency of the filter~
module ramps to 3000 Hz over 3 seconds, holds for 3
seconds, and ramps down to 200 Hz over 3 seconds.

Other control modules exist for mapping of parameters
between different modules, and for enabling network
communication using Open Sound Control. Such modules
are able to control themselves as well, offering possibilities
for complex recursive generative systems.

3.2 Various approaches to using Jamoma
The Jamoma distribution includes a number of modules,

and more modules will be added in the future to form a
library targeting a number of specific and common tasks for
audio and video processing.

For experienced users of Max/MSP/Jitter the structure
itself and the possibilities for control offered may be more
interesting than the included modules themselves. In
performance Jamoma offers efficient use of screen estate, a

standardized way of dealing with presets and parameter
handling, and simplifies complex handling of parameters.
The authors have found that modules ported to Jamoma tend
to maintain more of the possible parameters available for
interaction than when working with unstructured Max
patchers, resulting in richer expressive possibilities. In large
projects involving several artists or programmers Jamoma
offers a standardized framework to simplify collaborative
development. As Jamoma uses Open Sound Control it is
simple to extend the system to large projects running on a
network of connected computers.

For newcomers to Max/MSP/Jitter Jamoma can simplify
the process of structuring patches so that they become useful
and reliable. It is the authors’ hope that the Jamoma
structure will encourage reuse and exchange of modules
within the Max community.

In the case that one does not want to adapt to the
modular structure of Jamoma, the underlying algorithms
might still prove useful as lower-level building blocks. The
guidelines might be useful on their own, and could be
extended/adjusted to work with other programs for audio
processing. This could eventually be extended into a partly
standardized OSC namespace.

3.3 Jamoma modules as plugins
To demonstrate the flexibility of Jamoma, the official

distributions contain two examples of how to use Jamoma
modules in Pluggo-based5 plug-ins. Pluggo provides a
system whereby Max/MSP patches can be transformed into
plug-ins usable in any VST, AudioUnit, or Pro-Tools host.
By using Pluggo’s objects together with Jamoma it is
possible to quickly create complex and powerful plug-ins
for music production environments.

3.4 Obtaining Jamoma
As of this writing Jamoma version 0.3.1 is publicly

available for Windows XP and Mac OSX Universal Binary
from the Jamoma web site6. In spite of the low version
number, extensive development has been carried out. The
development of the Jamoma specification and
implementation has, to a large degree, been informed by
concerts, performances and installations by the authors and
others. Jamoma has proven a stable tool expanding artistic
flexibility and possibilities.

Jamoma is licensed under the terms of the GNU Lesser
General Public License7.

4. Further Development
Further development on the kernel will focus primarily

on performance improvements, possibly by porting many

5 http://www.cycling74.com/products/pluggo
6 http://www.jamoma.org
7 http://www.gnu.org/copyleft/lesser.html

patcher components to C-based externals. The support of
additional parameter ramping modes will allow both more
flexibility and better performance. In addition support is
planned for non-real-time rendering of audio and video.

Remaining improvements will be focused on the
module-level. For control modules this includes additional
automation facilities and paradigms, and different
approaches to handling time-based works. Current audio
module development includes work on spatialisation, effect
processing, and synthesis facilities. Modules for
spatialisation will offer access to several different
techniques, including vector based amplitude panning
(Pulkki, 2000) and ambisonics (Schacher and Kocher,
2006). Video module development is currently focused on
analysis of gestures, with The Musical Gestures Toolbox
(Jensenius, Godøy and Wanderley, 2005) being ported to
Jamoma.

There is an ongoing dialog with the Integra8 project led
by UCE Birmingham Conservatoire to ensure compatibility
between the two projects.

5 Acknowledgments
The Jamoma project wishes to thank Electrotap for

providing the initial resources for the project and for open
sourcing software required by Jamoma. Development has
been sponsored in part by Bergen National Academy of the
Arts as part of a research fellowship in the arts. The
jamoma.org website is hosted by Bergen Center for
Electronic Arts. Additional support has been provided by
Alexander Refsum Jensenius, Jeremy Bernstein at Cycling
’74, and the members of the Jamoma SourceForge project.

References
Jensenius, A. R., R. I. Godøy and M. M. Wanderley. 2005.

Developing tools for studying musical gestures within the
Max/Msp/Jitter environment. In Proceedings of the
International Computer Music Conference 2005, pp. 282-285.
Barcelone, Spain: International Computer Music Association.

Manovich, L.,2001. The language of new media. Cambridge,
Massachusetts: MIT Press.

Pulkki, V, 2000: Generic panning tools for MAX/MSP. In
Proceedings of International Computer Music Conference
2000. pp. 304-307, Berlin, Germany: International Computer
Music Association.

Schacher, J. C. and P. Kocher, 2006: Ambisonics Spatialization
Tools for Max/MSP. In Proceedings of the International
Computer Music Conference 2006, New Orleans, US:
International Computer Music Association.

Wright M. and A. Freed. 1997. Open sound control: A new
protocol for communicating with sound synthesizers. In
Proceedings of the International Computer Music Conference
1997, pages 101–104, Thessaloniki, Greece: International
Computer Music Association.

Zicarelli, D. 2002. How I Learned to Love a Program That Does
Nothing. Computer Music Journal 26(4), 44-51.

8 http://www.integralive.org

