
SpatDIF: Principles, Specification, and Examples

Nils Peters
ICSI, CNMAT UC Berkeley

nils@icsi.berkeley.edu

Trond Lossius
BEK, Bergen Center for Electronic Arts

trond.lossius@bek.no

Jan C. Schacher
ICST, Zurich University of the Arts
jan.schacher@zhdk.ch

ABSTRACT

SpatDIF, the Spatial Sound Description Interchange For-
mat, is an ongoing collaborative effort offering a seman-
tic and syntactic specification for storing and transmit-
ting spatial audio scene descriptions. The SpatDIF core
is a lightweight minimal solution providing the most es-
sential set of descriptors for spatial sound scenes. Addi-
tional descriptors are introduced as extensions, expanding
the namespace and scope with respect to authoring, scene
description, rendering and reproduction of spatial audio. A
general overview of the specification is provided, and two
use cases are discussed, exemplifying SpatDIF’s potential
for file-based pieces as well as real-time streaming of spa-
tial audio information.

1. INTRODUCTION

SpatDIF, the Spatial Sound Description Interchange For-
mat, is a collaborative effort [A] that aims to create a for-
mat (semantic and syntactic) as well as best-practice im-
plementations for storing and transmitting spatial audio
scene descriptions.

The goal of SpatDIF is to simplify and enhance the meth-
ods of working with spatial audio content in the con-
text of authoring, storage of pieces and their distribu-
tion, as well as performance and study of spatial mu-
sic. Typical users include composers, sound installation
artists, sound engineers, acousticians, virtual reality re-
searchers, musicologists and many more. SpatDIF strives
to be human-readable i.e., easily understood and unam-
biguous, platform- and implementation-independent, ex-
tendable, and free of license restrictions.

SpatDIF’s application is not limited to the audio-
scene concept alone. The ability to communicate time-
independent meta-data as well as the concept of extend-
ing SpatDIF with further types of data-descriptors opens
up the format to other fields such as sound-synthesis, com-
positional algorithms or abstract spatial geometry develop-
ments.

1.1 History and progress

SpatDIF was coined in [1] where the authors stated the
necessity for a format to describe spatial audio scenes in

Copyright: c©2012 Nils Peters et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

a structured way, since at that point the available spatial
rendering systems used self-contained syntax and data-
formats. Through a panel discussion [2,3] and other meet-
ings and workshops [B], the concept of SpatDIF has since
been extended, refined, and consolidated.

After a long and thoughtful process, the SpatDIF specifi-
cation was informally presented to the spatial audio com-
munity at the ICMC 2011 and a workshop at the TU-Berlin
in September 2011 [B]. Many of the responses in these
meetings suggested the urgent need for a lightweight and
easily implementable spatial audio scene standard, which
could contrast the complex MPEG standard [4]. In ad-
dition, many features necessary to make this lightweight
standard functional were put forward, such as the capabil-
ity of dealing with temporal interpolation of scene descrip-
tors. This feedback and numerous discussions prompted
the presentation in this paper of an overview of the revised
SpatDIF specification.

1.2 Other Intiatives

Over the years several formats and frameworks have been
proposed with the goal of platform-agnostic playback and
re-usability of scene elements: With the introduction of
MPEG-4 AudioBIFS [4] by the audio industry, a com-
prehensive format for sound scene description, multimedia
content creation and delivery was established. According
to [5], no complete implementation of the MPEG-4 system
is available, because the MPEG-4 specification is large and
hard to implement. Aimed primarily at the gaming market,
spatial sound libraries such as OpenAL [6], FMOD [C],
or irrKlang [D] do also exist. They are easy to integrate,
but lack a number of music-performance related features
and flexibility necessary for artistic work. Furthermore,
a specification for controlling spatial audio content using
the MIDI protocol was also developed and published [7].
Partially inspired by VRML/X3D [8], several XML-based
formats have been presented, such as [5, 9, 10]. Based on
the binary SDIF format, Bresson and Schumacher [11] pre-
sented a workflow for interchange of sound spatialization
data mainly for algorithmic composition applications. Re-
cently, the Spat-OSC library [12] was presented, which cir-
cumvents the development of an interchange format alto-
gether by communicating directly with a number of spe-
cific rendering interfaces through a dedicated OSC-syntax.

1.3 A stratified approach

A stratified approach to sound spatialization was proposed
in [13], encouraging the use of a clear structure, flexibility,
and interoperability. The tiered model comprises 6 layers,

mailto:nils@icsi.berkeley.edu
mailto:trond.lossius@bek.no
mailto:jan.schacher@zhdk.ch
http://creativecommons.org/licenses/by/3.0/


as shown in the leftmost column of Figure 2. The lowest
two layers interface with and address physical hardware.
Layers 3 and 4 deal with the actual audio processing such
as encoding and decoding of spatial audio. The fifth layer
serves for the description of spatial scenes and the upper-
most layer represents the abstract processes and algorithms
used for authoring the work.

2. SPATDIF STRUCTURE

SpatDIF presents a hierarchical, unambiguous structure.
The SpatDIF-syntax serves for structuring audio-scene re-
lated information.

2.1 The SpatDIF Philosophy

From the very beginning, one of the guiding principles for
SpatDIF was the idea that authoring and rendering of spa-
tial audio might occur at completely separate times and
places, and be executed with tools whose capabilities can-
not be known in advance. The goal was to formulate a
concise semantic structure that is capable of carrying the
necessary information, without being tied to a specific im-
plementation, thought-model or technical method. Spat-
DIF is a syntax rather than a programming interface or file-
format. SpatDIF may be represented in any of the struc-
tured mark-up languages or message systems that are in
use now or in the future. Examples of streaming (OSC)
and storing SpatDIF data (XML, YAML, SDIF) accom-
pany the specification in a separate document.

SpatDIF describes only the aspects required for the stor-
age and transmission of spatial information. A complete
work typically contains additional dimensions outside the
scope of SpatDIF. These are only addressed to the extent
necessary for linking the elements to the descriptions of
the spatial dimension.

2.2 Terminology

A SpatDIF scene is the combination of a space and the ac-
tions that are unfolding within it. A scene consists of a
number of SpatDIF entities. Entities are all objects that
are affecting or interacting with the sound of that scene.
Entities can be of different kinds e.g., sources or sinks.
Each entity instance is assigned a name, so that it may
be uniquely identified within the scene. The properties
of entities are described and transmitted via SpatDIF de-
scriptors. A complete SpatDIF statement consists of an
address unambiguously identifying an entity, its descrip-
tor and its associated value. The values of descriptors may
change over time. All entities and descriptors are defined
within the SpatDIF namespace.

OSC addresses for example, need to comply with the
SpatDIF namespace in order to be valid SpatDIF state-
ments. An OSC message such as /src/1/pos 1.0 5.0

0.0 is considered invalid, since neither the kind src nor
the descriptor pos are defined in the SpatDIF namespace.

Figure 1 shows a valid SpatDIF statement in stream-
ing OSC-style: the entity is of kind source and named
romeo, the position descriptor is set by the vector
(1.0 5.0 0.0), which is its value.

source romeo position 1.0 5.0 0.0/ / /  

Address

Value

Statement

Kind Name Descriptor

Entity

spatdif/

SpatDIF
declaration

Figure 1. SpatDIF terminology

3. SPATDIF SPECIFICATION

This section provides a brief overview of the current Spat-
DIF specification, which can be found at [A].

3.1 Meta and time sections

A SpatDIF scene can consist of two sections; a meta sec-
tion and a time section. The meta section serves to con-
figure and initialize the system, while the time section de-
scribes the temporal unfolding of a scene.

3.1.1 Meta section

The meta section contains meta descriptions, and is located
at the beginning of a SpatDIF representation. It contains
information that is not executed at runtime; timed events
are therefore excluded from this section. The meta de-
scriptions contain extension setup information (see Sec-
tion 3.2.2), general annotation and documentation infor-
mation, information about the organization of the subse-
quent time section, higher-level process and compositional
information and technical setup information referring to
the original authoring situation.

The meta section can also be used to describe a static
scene or the initial state of a dynamic scene. The meta
section is mandatory for a SpatDIF representation.

3.1.2 Time section

The time section holds information about entities and their
descriptors as they unfold over time. Each statement is lo-
cated at a specific point in time. If the scene to be described
is static, no temporal data will be required. For this reason
the time section is optional.

SpatDIF does not enforce any particular system for order-
ing the statements within the time section. Standard mu-
sical notation shows that several ordering principles exist.
Ordering by time is equivalent to an orchestral score and
provides a complete overview, while ordering by entities
groups the statements into individual parts or tracks. In the
context of real-time streaming of scenes, ordering by time
is necessary, while in storage-type scenarios other ordering
principles may be more adequate.

3.2 Core and extensions

A standard for interchange of spatial scenes faces the chal-
lenge of, on the one hand, having to offer a compact
method for the description of works in a lightweight for-
mat, while on the other hand catering to more advanced



techniques and various spatialization methods in an exten-
sible way. SpatDIF solves this by defining a set of core
descriptors and various extensions.

3.2.1 The SpatDIF core

The most basic SpatDIF namespace is defined in the Spat-
DIF core. The core provides the most essential, yet ex-
tensible set of functionalities for describing spatial sound
scenes. In terms of the layered model for spatialization
discussed in Section 1.3, the core only deals with the most
fundamental descriptors required at the scene description
layer (layer 5).

A SpatDIF compliant audio renderer must understand
and interpret all core statements.

Source entities are the most essential elements in audio
scenes. As can be seen in Table 1, only the most basic
source descriptors are provided by the core. This table
serves as an example of how entities are being defined in
the SpatDIF specification.

Descriptor Data
type

Default
value

Default unit Alternative
units

type 1 string point — —
present 1 boolean true — —
position 3 double 0. 0. 0. xyz aed,

openGL
orientation 3-4 double 0. 0. 0. euler quaternion,

angle-axis

Table 1. Core descriptors for source entities

A sound source is further specified by the type descriptor.
The core only describes point sources, therefore point is
the default and only possible value. Extensions introduce
additional types in order to describe more complex kinds
of sources, as discussed in Section 3.2.2. A source can be
dynamically added or removed from a scene by means of
the boolean descriptor present. The six degrees of freedom
of a point source are described by means of the position
and orientation descriptors. Position as well as orienta-
tion can be expressed using different coordinate systems,
thus allowing description of the scene in a more flexible,
yet non-ambiguous way. Conversions between the differ-
ent systems and units are provided as an addendum to the
specification,

The media resources serve to assign media content to the
source entities. The SpatDIF core supports three types of
media resources: live streams, live audio input, and sound
files. In addition the type can be set to none.

A number of meta-descriptors are defined in the core, pri-
marily for use in the meta-section. This includes annota-
tion for comments, info on author, session, location, etc.,
and what extensions are used within the SpatDIF scene, as
discussed later in Section 3.2.2.

The default unit for time is seconds, with alternative units
defined in the specification.

The core provides two time methods that simplify the de-
scription of common patterns of change over time: Inter-
polation and Looping are general methods that may be ap-
plied to any descriptor that evolves over time, e.g., posi-
tion, rotation or even playback of a sound file. These time
methods simplify the process of describing a scene and im-
prove readability by thinning out data in order to reveal

common underlying patterns.
Interpolation enables up-sampling of temporally sparse

information.

3.2.2 Extensions

When using only the SpatDIF core, vital information to a
faithful reproduction of a spatial audio project may have
been simplified or left out. For example, the SpatDIF core
lacks support for directional sources and doesn’t describe
how spatial sound is rendered. It is important that addi-
tional information be included and details about the orig-
inal performance and intentions be stored for future re-
interpretation or restoration of a work. For instance, main-
taing precise information about all layers of the spatial
workflow is important for studying spatial audio perfor-
mance practice [14, 15].

SpatDIF extensions introduce additional descriptors in a
modular way. The extensions expand the namespace and
scope of SpatDIF in relation to authoring, description, ren-
dering and reproduction of spatial audio.

This permits the use of new descriptors addressing the re-
maining layers of the stratified model as discussed in Sec-
tion 1.3, and also enables a richer description of the spatial
scene at layer 5.

Extensions might introduce new kinds of entities, ex-
pand the set of descriptors for existing entities, or augment
descriptors defined by other extensions. Extensions may
also address meta-descriptors or extend and introduce new
time-methods.

When a SpatDIF project makes use of extensions, the
meta-section is required to declare what extensions are
present. It thus becomes immediately apparent what
rendering capabilities are necessary for the complete re-
presentation of the scene.

Support for extensions is optional: a renderer is not re-
quired to be able to act on extensions, and might only sup-
port a subset of all available extension information. If a
renderer is unable to process the statements of a specific
extension, it is expected to gracefully fail. A renderer
without any extension support, for example, might treat all
types of sources as the default point sources, and processes
only presence, position and orientation, which are core de-
scriptors.

Figure 2 illustrates a number of extensions that are cur-
rently being considered, organized by the layer they be-
long to. New extensions will initially be developed and
validated as a collaborative effort within the SpatDIF com-
munity, drawing on experts within the relevant fields. As
the definition of an extension reaches maturity, it will be
added to the SpatDIF specification.

To facilitate storage of data that is otherwise unsupported
by SpatDIF core and extensions, a private extension is de-
fined. It serves a similar purpose to System Exclusive mes-
sages within the MIDI specification [16]. Since the syntax
and semantics of the private extension are unspecified, its
use severely hampers interoperability of SpatDIF scenes
– a key goal of SpatDIF. It is therefore urgently recom-
mended to abstain from using the private extension and
rather make the effort to provide a generally useful new



Loop
Interpolation

Media

Group

Decoded Audio Stream

Encoded Audio Stream

Render Instructions

Processing Layers

Scene Control Data

Hardware-
OutHardware Abstraction2

Trajectory-
Generator

Geometry-
TransformAuthoring6

Physical Devices1

Audio Data

SpatDIF Core and Extensions Further Functionalities

Source
DirectivityScene Description5 CORE

Source Entity
Source
Width

Reverb Distance-
Cues DopplerEncoding4 Ambisonics 

Encoding 

Decoding3 Ambisonics
Decoding

Sink 
Directivity

Sink 
Entity Binaural

Private

(independent of layers)

A

E

D

C

B

Direct-to-One 
Sink

Figure 2. The layer model of the SpatDIF namespace. Extensions with a dashed frame are work-in-progress.

extension.

3.3 Additional Conventions

SpatDIF is governed by some additional general conven-
tions. In the specification, a default state is defined for all
relevant entities. An initial value may be explicitly set in
the meta section, and will override the default. This state
can be further altered by subsequent statements in the time
section of the scene. Entities maintain an internal state -
when new statements are received, un-touched descriptors
remain the same. 1

All descriptors have a default unit. Alternative units may
be used as defined in the specification. For example several
alternative coordinate systems are supported that can be
used interchangeably. The default system is the Cartesian
Navigational System with x to the right, y in the forward
direction and z pointing upwards.

4. USE CASES

The following use-cases represent two applications of the
SpatDIF standard.

4.1 File-Based Score: Turenas

In 1972 John Chowning completed Turenas, one of the
first electronic compositions that created the impression of
moving sound sources in a 360-degree space. It was com-
posed for FM synthesizers, four loudspeaker channels and
a reverberation unit. It is famous for its use of Lissajous
figures as sound trajectories [15]. Although Turenas is a
tape piece, it was recently recreated as a performance patch

1 The present flag is an exception, refer to the specifications for details.

for MaxMSP [17]. We analyzed this patch to demonstrate
how SpatDIF can be beneficial to this score-based context.

The main score of Turenas is stored in a table containing
the sound generation parameters for the different FM syn-
thesizers. There are additional trajectory cues which are
triggered from the main score. These trajectories contain
the gains of the 4 loudspeakers to form the panning angle
from which a sound source appears, a gain factor and the
direct-to-reverberant ratio to form distant cues, and a pitch-
shift to simulate the doppler effect of a moving source.
These eight values define the spatial properties of a source
at any given point in time. Table 2 illustrates the begin-
ning of such a trajectory, in this case the beginning of Ture-
nas’ Lissajous curve used for spatialization: an insect-like
sound at the beginning of the piece.

The trajectories consist of 60 to 120 discrete sampling
points. At runtime, a linear interpolation in Cartesian co-
ordinates is used for a smooth transition from one sampling
point to the next. Since all sounds are synthesized by the
performance patch, the tempo of the performance can be
altered, e.g. in order to accommodate the reverberant con-
ditions of the venue.

Loudspeaker gains Gain direct vs. reverb Pitch
ID 1 2 3 4 factor Ratio shift
1, 0.7071 0.7071 0 0 0.2859 0.5347 0.4653 0.9773;
2, 0.7739 0.6333 0 0 0.2998 0.5475 0.4525 1.0314;
3, 0.8521 0.5234 0 0 0.3443 0.5867 0.4133 1.0884;
4, 0.96 0.2801 0 0 0.4211 0.6489 0.3511 1.1109;
5, 0.8852 0 0 0.4652 0.4886 0.6990 0.3010 1.066;
6, 0.6881 0 0 0.7256 0.4646 0.6812 0.3188 0.98;
: : : : : : : : :

Table 2. Example of a trajectory table in the Turenas patch



Referring to our stratified approach in Figure 2, the Ture-
nas score can be considered as channel-based rendering
instructions for creating a decoded audio stream (stream
B) on the Hardware abstraction layer (Layer 2) 2 . Such
channel-based instructions pose a challenge to the adap-
tation of the piece to other loudspeaker configurations. It
remains unclear from the score in which arrangement and
sequence the 4 loudspeakers are to be placed.

With the knowledge of the loudspeaker positions and by
applying an equal-power panning law to the gain values
from Table 2, we were able to “reverse-engineer” the tra-
jectory (see blue curve in Figure 3). Using the position
descriptor of the SpatDIF core, the sampling points of Ta-
ble 2 can now be described in the time section (using a
stream-based OSC style):
/spatdif/time 0.0
/spatdif/source/insect/position 0.00 7.99 0.0
/spatdif/time 1.0
/spatdif/source/insect/position 2.92 6.96 0.0
/spatdif/time 2.0
/spatdif/source/insect/position 4.41 4.81 0.0

Notated in the file-based YAML style and using spherical
coordinates, the same description would be:
spatdif:

time: 0.0
source:

name: insect
position: 0.0 0.0 7.99 aed

time: 1.0
source:

name: insect
position: 22.8 0.0 7.55 aed

time: 2.0
source:

name: insect
position: 42.5 0.0 6.52 aed

To encode the distance attenuation within the rendering
process, the SpatDIF distance-cues extension is needed.
Using this extension, the distance attenuation is computed
based on the distance from the sound source to the origin
of the coordinate system. At the same time, this distance
information can be used for regulating the wet/dry ratio of
the reverb.

Similarly, using the Doppler extension, the amount of
pitch shifting can be communicated to the renderer.

According to [15], the sampling points shown in Ta-
ble 2 have been derived from the Lissajous curve in Equa-

2 Note the special requirements of an external 4-channel reverb unit.

Figure 3. Left: reconstructed Lissajous trajectory from
the cue points in Table 2. Black x mark the loudspeaker
positions. Right: the Lissajous curve based on Eq. 1.

tion 1 with additional scaling and translation. By using the
Trajectory-generator extension and a Geometry-transform
extension from the authoring layer, the Lissajous figures
could be stored in an abstract mathematical representation
and then rendered in any desired accuracy:

x = sin(2π · t) + sin(6π · t) (1)
y = cos(3π · t) + cos(7π · t)

4.2 Real-Time Stream-Based System: Flowspace II

A number of scenarios for using SpatDIF in real-time can
be envisioned. The obvious use-case is live control of spa-
tialization during performance, using a joystick or a MIDI-
console. A further use-case is a remote, co-located per-
formance, where the state of two audio-scenes is synchro-
nized across a network. Finally, any system that gener-
ates control data on the fly can benefit from streaming the
spatialization information using SpatDIF, especially when
working in a modular fashion.

This last use-case is exemplified by the interactive audio-
visual installation Flowspace II by Jan Schacher, Daniel
Bisig, and Martin Neukom. The work was shown in the
fall of 2010 at the Grey Area Foundation for the Arts
in San Francisco as part of the group exhibition Milieux
Sonores [18]. The installation presents the visitor with a
Dodecahedron of 4 meters in diameter. Located in its ver-
tices are twenty inward-facing speakers, creating a regular
spherical speaker array [19], as documented in [E]. The
installation deals with simulation of life-like autonomous
systems [20]. Three different art-works are shown, each
composition based on a specific swarm simulation com-
bined with a musical and visual composition, both con-
trolled by a specific flocking algorithm. The swarm simu-
lations themselves can be manipulated by the visitors using
the touch interface.

ja
ck

si
m

ul
at

io
n

m
as

te
r c

on
tro

l

Fi
lte

rb
an

k

to
uc

h-
tra

ck
er

in
te

rp
re

te
r/

vi
su

al
is

at
io

n

S
yn

thSpatDIF
so

un
dc

ar
d

SpatDIF (Layer 3)

to
uc

h 
su

rfa
ce

Figure 4. Flowspace II system, structure, and data flow.

The interesting aspect in this context is the systems-
architecture used with the three simulations, each control-
ling a sonic and visual rendering (Figure 4). The compo-
nents of the system are written in different software en-
vironments and change according to which piece is run-
ning. All control information flows through the network,
encoded as OSC-messages. The control and simulation
parts fulfill the role of the authoring layer of the strati-
fied approach (layer 6). Control data from the intermedi-
ate interpreter-layer is transmitted to the Synth and Audio-
Renderer, which stays the same. The setting of state of
the filter-bank - a necessary component for driving the
speaker array - is controlled by the master state-machine



using SpatDIF layer 3 commands. The SpatDIF-stream
provides the common interface for these modules

The following excerpt shows the SpatDIF stream, with
two types of sources, agents and secondaries, located ei-
ther at an impact-point between agents or at a point on the
bounding volume of the flock. The example is formatted
in the streaming OSC-style:
/spatdif/source/agent 01 impact/position 0.18 −0.56 0.5
/spatdif/source/agent 01 impact/media 067 piano.aif
/∗ at a later time ∗/
/spatdif/source/secondary 17 impact/position 0.1 −0.31 0.48
/spatdif/source/secondary 17 impact/media 067 piano gran.aif
/∗ at a later time ∗/
/spatdif/source/agent 01 bounds/position 1.0 0.42 0.5
/spatdif/source/agent 01 bounds/media 084 piano.aif

5. CONCLUSION AND FUTURE WORK

In this paper we have presented the SpatDIF specification
and the principles according to which it was designed. The
full specification can be found at [A]. SpatDIF consists of
a minimal, lightweight core for spatial scene descriptions.
The scope of SpatDIF can be expanded by extensions.

Two use cases are presented, that illustrate the two main
paradigms in which SpatDIF is applied. Chowning’s Ture-
nas serves as an example of using SpatDIF in a file-based
storage format. Composed prior to performance, this his-
torical piece can benefit from the recasting in a SpatDIF
description. This separates the interpretation from the
original constraints and through generalization permits the
piece to be played on larger speaker arrays and using dif-
ferent spatialization techniques. The stream-based trans-
mission format is discussed in the audio-visual installation
Flowspace II, where the utility of SpatDIF in a complex
modular workflow is shown, as well as the application of
extended descriptors that address additional layers.

Future work will emphasize the development of addi-
tional extensions. This will be coordinated as a collabora-
tive effort within the SpatDIF community, and interested
parties are invited to contribute to this process. As the
number of extensions grow, it will be necessary to research
in more detail how to deal with increasing complexity and
find an approach on how to handle the concept of “grace-
fully failing”.

In brief, SpatDIF is ready to be implemented, used, and
actively extended.

Acknowledgments

Thanks go to the many people of the spatial audio commu-
nity for their often-times passionate comments and sugges-
tions, to CIRMMT for supporting the first author’s visiting
research at IRCAM, to Deutsche Telekom Laboratories of
the TU-Berlin for hosting a workshop and to Laurent Pot-
tier for providing the Turenas performance patch.

References and Web Resources
[1] N. Peters, S. Ferguson, and S. McAdams, “Towards a

Spatial Sound Description Interchange Format (SpatDIF),”
Canadian Acoustics, vol. 35, no. 3, pp. 64 – 65, 2007.

[2] G. S. Kendall, N. Peters, and M. Geier, “Towards an in-
terchange format for spatial audio scenes,” in Proc. of the

International Computer Music Conference, Belfast, UK,
2008, pp. 295–296.

[3] N. Peters, “Proposing SpatDIF - The Spatial Sound De-
scription Interchange Format,” in Proc. of the International
Computer Music Conference, Belfast, UK, 2008.

[4] E. Scheirer, R. Vaananen, and J. Huopaniemi, “AudioBIFS:
Describing audio scenes with the MPEG-4 multimedia stan-
dard,” IEEE Transactions on Multimedia, vol. 1, no. 3, pp.
237–250, 1999.

[5] M. Geier, J. Ahrens, and S. Spors, “Object-based audio re-
production and the Audio Scene Description Format,” Or-
ganised Sound, vol. 15, no. 03, pp. 219–227, 2010.

[6] G. Hiebert, OpenAL 1.1 Specification and Reference, 2005.
[7] Creative Technology, Ltd. / E-MU Systems, “Three dimen-

sional sound controllers (rp-049),” MMA Technical Stan-
dards Board/ AMEI MIDI Committee, http://www.midi.
org/techspecs/rp49public.pdf, 2009.

[8] Web3D Consortium, “eXtensible 3D (X3D),” 2004,
http://www.web3d.org/x3d/.

[9] H. Hoffmann, R. Dachselt, and K. Meissner, “An indepen-
dent declarative 3D audio format on the basis of XML,” in
Proc. of the Int’l Conference on Auditory Display, Boston,
USA, 2003.

[10] G. Potard and S. Ingham, “Encoding 3D sound scenes and
music in XML,” in Proc. of the International Computer Mu-
sic Conference, Singapore, 2003.

[11] J. Bresson and M. Schumacher, “Representation and inter-
change of sound spatialization data for compositional ap-
plications,” in Proc. of the International Computer Music
Conference, Huddersfield, UK, 2011.

[12] M. Wozniewski, A. Quessy, and Z. Settel, “SpatOSC: Pro-
viding abstraction for the authoring of interactive spatial au-
dio experiences,” in to appear in Proc. International Com-
puter Music Conference, Ljubljana, Slovenia, 2012.

[13] N. Peters, T. Lossius, J. C. Schacher, P. Baltazar, C. Bas-
cou, and T. Place, “A stratified approach for sound spatial-
ization,” in Proc. of the 6th Sound and Music Computing
Conference, Porto, PT, 2009, pp. 219–224.

[14] M. A. Harley, “Space and spatialization in contemporary
music: History and analysis, ideas and implementations,”
Ph.D. dissertation, McGill University, Montreal, Canada,
1994.

[15] J. Chowning, “Turenas: the realization of a dream,” in
Proc. of the 17es Journées d’Informatique Musicale, Saint-
Etienne, France, 2011.

[16] The MIDI Manufacturers Association, The Complete MIDI
1.0 Detailed Specification. Version 96.1 Second Edition.
The MIDI Manufacturers Association, 2001.

[17] L. Pottier, “Turenas (1972) de john chowning, vers une
version interactive,” Musimediane, no. 6, p. http://www.
musimediane.com/numero6/POTTIER/index.html, 2011.

[18] M. Maeder, Ed., Milieux Sonores - Klangliche Milieus.
Klang, Raum und Virtualität. Bielefeld: Transcript Ver-
lag, 2010.

[19] D. Bisig, J. C. Schacher, and M. Neukom, “Flowspace – a
hybrid ecosystem,” in Proc. of the International Conference
on New Interfaces for Musical Expression, Oslo, Norway,
2011.

[20] J. C. Schacher, D. Bisig, and M. Neukom, “Composing with
swarm algorithms – creating interactive audio-visual pieces
using flocking behaviour,” in Proc. of the International
Computer Music Conference, Huddersfield, UK, 2011.

[A] http://spatdif.org
[B] http://redmine.spatdif.org/projects/

spatdif/wiki/Meetings
[C] http://www.fmod.org
[D] http://www.ambiera.com/irrklang
[E] http://www.jasch.ch/flowspace.html

All quoted web resources were verified on August 14, 2012.

http://www.midi.org/techspecs/rp49public.pdf
http://www.midi.org/techspecs/rp49public.pdf
http://www.web3d.org/x3d/
http://www.musimediane.com/numero6/POTTIER/index.html
http://www.musimediane.com/numero6/POTTIER/index.html
http://spatdif.org
http://redmine.spatdif.org/projects/spatdif/wiki/Meetings
http://redmine.spatdif.org/projects/spatdif/wiki/Meetings
http://www.fmod.org
http://www.ambiera.com/irrklang
http://www.jasch.ch/flowspace.html

	 1. Introduction
	1.1 History and progress
	1.2 Other Intiatives
	1.3 A stratified approach

	 2. SpatDIF Structure
	2.1 The SpatDIF Philosophy
	2.2 Terminology

	 3. SpatDIF Specification
	3.1 Meta and time sections
	3.1.1 Meta section
	3.1.2 Time section

	3.2 Core and extensions
	3.2.1 The SpatDIF core
	3.2.2 Extensions

	3.3 Additional Conventions

	 4. Use Cases
	4.1 File-Based Score: Turenas
	4.2 Real-Time Stream-Based System: Flowspace II

	 5. Conclusion and Future Work

